

Section 2.2

Synthèse des connaissances

Jennifer Tetzlaff
Institut de recherche de l'Hôpital d'Ottawa

Andrea C. Tricco, Ph.D. Institut de recherche de l'Hôpital d'Ottawa

David Moher, Ph.D.
Institut de recherche de l'Hôpital d'Ottawa

Définitions*

- La synthèse des connaissances (SC) repose sur une question formulée clairement et fait appel à des méthodes systématiques et explicites pour trouver, sélectionner, examiner d'un œil critique et interpréter les données de la recherche pertinente.
- La méta-analyse est une méthode statistique employée pour intégrer quantitativement les résultats des études incluses dans la SC.
- Une SC ne comprend pas nécessairement une méta-analyse.

Canada

Synthèse des connaissances

- La SC permet d'interpréter les résultats d'études particulières à la lumière de l'ensemble des données disponibles.
- La SC peut servir de point de départ à l'élaboration de lignes directrices pour la pratique et de nouvelles recherches primaires (p. ex. des essais).
- La SC fait le pont entre la recherche et le processus décisionnel.

Types de données

- De nombreux groupes partout dans le monde réalisent des SC, et les méthodes qu'ils emploient varient en fonction de la question à l'étude.
 - Les questions portant sur l'efficacité des interventions comprennent généralement des données quantitatives (p. ex. le risque relatif approché d'un médicament donné par rapport à un placebo).
 - Les questions contextuelles portant sur les raisons pour lesquelles une intervention a fonctionné dans un contexte donné comprennent généralement des données qualitatives.

Méthodes générales pour réaliser une SC

- L'intégration de données qualitatives dans une SC peut être problématique :
 - ces données sont difficiles à trouver;
 - ces données sont difficiles à intégrer aux données quantitatives;
 - on commence à peine à se doter de méthodes à cet effet.
- Ainsi, nous traiterons des méthodes générales qui s'appliquent à la plupart des SC.

Méthodes générales pour réaliser une SC

Aperçu

- Constitution de l'équipe de travail
- Établissement de la question, du protocole et des critères d'admissibilité
- Recherche d'études pertinentes
- Sélection des études
- Évaluation du risque de partialité
- Extraction des données
- Analyse des données
- Présentation des résultats
- Interprétation des résultats

CIHR IRSC

L'équipe de travail

- Sa composition est déterminée par la question à l'étude.
- Les personnes suivantes peuvent en faire partie :
 - des experts cliniques qui connaissent le sujet à l'étude;
 - des spécialistes de la méthodologie qui connaissent le processus de SC;
 - un bibliothécaire qui facilitera la recherche d'études pertinentes;
 - des chercheurs qui ont déjà travaillé sur le sujet à l'étude;
 - des représentants de l'organisme qui a financé ou commandé les travaux, qui pourra fournir un contexte;
 - un statisticien, si une méta-analyse est envisagée;
 - des utilisateurs finaux (p. ex. décideurs, patients), afin d'augmenter la pertinence et l'application des résultats.

Établissement de la question

- Il s'agit de l'étape la plus importante, car elle oriente le processus de SC.
- Le modèle PICO(S ou T) facilite l'élaboration de la question : population, intervention, facteurs de comparaison, résultat (outcome) et méthodologie (study design) ou durée (time period).
- Ce modèle ne convient pas nécessairement à toutes les SC (par exemple, la composante intervention peut être remplacée par exposition), mais il peut quand même s'avérer utile.

Établissement du protocole

- Cette étape permet de préciser à l'avance le processus d'examen.
- Elle est importante, car elle permet de réduire les changements ultérieurs aux méthodes et la communication sélective des résultats.
- Le protocole comprend notamment les résultats primaires et secondaires, les méthodes de recherche, l'analyse documentaire et l'abstraction des données.
- Le compte rendu de l'examen doit faire état, de manière transparente, de tout changement au protocole.

Établissement des critères d'admissibilité

- Ces critères doivent découler de la question.
- Ils peuvent s'inspirer du modèle PICO(S ou T).
- Il faut tenir compte de la langue de publication.
- Il faut tenir compte du statut de publication (p. ex. articles publiés par opposition aux articles non publiés).
- Les critères doivent être soigneusement examinés, bien définis et énoncés en toute transparence.

Recherche d'études pertinentes

- La recherche est effectuée en fonction de la question et du modèle PICO(S ou T).
- Les banques de données MEDLINE, EMBASE et The Cochrane Library sont fréquemment consultées pour les recherches sur la santé.
- Il est préférable de consulter au moins deux banques de données pertinentes.
- Il est préférable qu'un bibliothécaire dirige le processus.
- La recherche doit intégrer la littérature grise, soit les articles non publiés ou difficiles à trouver (p. ex. registres d'essais, sites Web d'agences de la santé publique).

Sélection des études

- La sélection se fait en fonction des critères d'admissibilité.
- Deux étapes : survol rapide des titres et des résumés, puis lecture plus approfondie des textes intégraux qui peuvent s'avérer pertinents.
- L'ensemble du processus devrait être effectué par deux examinateurs indépendants afin de prévenir les omissions.
- Il est possible de mesurer l'accord entre les examinateurs à l'aide du test du Kappa.

Évaluation du risque de partialité

- De nombreux outils permettent d'évaluer le risque de partialité associé à diverses méthodologies.
- Évitez de fournir uniquement une valeur globale; il serait bon d'inclure pour chaque étude les résultats de chacun des critères de l'évaluation qualitative.
- Il est possible de procéder à des analyses de sensibilité plutôt que d'exclure des études en raison d'un risque de partialité.

Extraction des données

- Différenciez les résultats primaires et les résultats secondaires.
- Élaborez les formulaires d'extraction de données à l'avance et procédez à des essais pilotes pour augmenter leur fiabilité.
- Confiez l'extraction des données à plus d'un examinateur indépendant; vous réduirez ainsi le risque d'erreurs.
- Communiquez avec les auteurs des études pour obtenir les renseignements manquants ou des éclaircissements.

Analyse des données

- L'analyse dépend de la question et du type de données recueillies.
- Toutes les SC doivent comprendre une synthèse narrative des résultats et du risque de partialité.
- Il est possible d'utiliser des mesures d'effets standard (p. ex. risque relatif approché, indice de risque).
- Le recours à la méta-analyse peut être impossible ou déconseillé lorsque les résultats n'ont pas été évalués uniformément et qu'on observe une certaine hétérogénéité clinique, méthodologique ou statistique.

Présentation des résultats

- Décrivez le processus de sélection dans le texte ou présentez-le sous forme de diagramme.
- Énumérez les caractéristiques des études incluses dans la SC soit dans le texte, soit dans un tableau (p. ex. populations, interventions).
- Présentez les résultats des évaluations du risque de partialité dans un tableau ou dans le texte.
- Présentez les données quantitatives comme des données sommaires (p. ex. incluez les estimations d'effets et les intervalles de confiance pour chaque étude) et, pour chaque résultat, présentez-les dans un tableau ou un « graphique en forêt » (forest plot).
- Présentez les données qualitatives sous forme visuelle (p. ex. cadre conceptuel).

Interprétation des résultats

- Il faut analyser le risque de partialité, la solidité et l'applicabilité des données pour chacun des résultats.
- La pertinence des résultats doit être évaluée pour favoriser leur application par les intervenants concernés.
- Les données qualitatives aident à déterminer la façon dont l'intervention a fonctionné et si elle fonctionnera dans un milieu différent.
- L'interprétation doit tenir compte des limites des études et de la SC.

Dissémination des résultats

- La forme de dissémination la plus répandue est la publication dans des revues scientifiques examinées par des pairs.
 - Les revues à libre accès favoriseront la dissémination.
- Dissémination ciblée: médias pour le public; courts rapports pour les professionnels de la santé, les décideurs et les consommateurs; outils d'aide à la décision pour les patients.

Application des résultats

- Beaucoup d'efforts ont été mobilisés pour améliorer la qualité des SC, mais relativement peu de travail a été accompli quant aux façons de présenter les résultats pour en favoriser l'application.
- Certaines ressources contribuent à rendre les SC plus conviviales (p. ex. le site Clinical Evidence [http://clinicalevidence.bmj.com/ceweb/index.jsp] et la banque de données du Program in Policy Decision-Making/Canadian Cochrane Centre [http://www.researchtopolicy.ca/Search/Reviews.aspx]).

Pistes de recherche

- Augmentation de l'application des résultats des SC
- Façons optimales de mettre à jour les SC
- Comparabilité des différents types de SC (p. ex. examens rapides par rapport aux examens traditionnels)
- Classement en ordre de priorité des sujets pouvant faire l'objet d'une SC

Coordonnées

 Centre de méthodologie du Programme d'épidémiologie clinique, Institut de recherche de l'Hôpital d'Ottawa

JMT : jtetzlaff@ohri.ca

ACT : <u>atric060@uottawa.ca</u>

• DM: dmoher@ohri.ca

Remerciements

- Merci aux IRSC pour leur soutien financier et merci à la D^{re} Sharon Straus pour son soutien financier et ses commentaires utiles à propos de notre article.
- ACT : IRSC (Bourse d'études supérieures du Canada Frederick Banting et Charles Best et Prix de l'étoile montante de l'Institut des services et des politiques de la santé)
- DM : Chaire de recherche de l'Université d'Ottawa

